
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 4002–4017

www.elsevier.com/locate/jcp
Redistancing by flow of time dependent eikonal equation

Li-Tien Cheng a,*, Yen-Hsi Tsai b

a Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, United States
b Department of Mathematics, University of Texas, Austin, TX 78712, United States

Received 11 June 2007; received in revised form 6 December 2007; accepted 10 December 2007
Available online 1 January 2008
Abstract

Construction of signed distance to a given interface is a topic of special interest to level set methods. There are currently,
however, few algorithms that can efficiently produce highly accurate solutions. We introduce an algorithm for constructing
an approximate signed distance function through manipulation of values calculated from flow of time dependent eikonal
equations. We provide operation counts and experimental results to show that this algorithm can efficiently generate solu-
tions with a high order of accuracy. Comparison with the standard level set reinitialization algorithm shows ours is supe-
rior in terms of predictability and local construction, which, for example, are critical in local level set methods. We further
apply the same ideas to extension of values off interfaces. Together, our proposed approaches can be used to advance the
level set method for fast and accurate computations of the latest scientific problems.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Level set method; Eikonal equation; Distance; Interface
1. Introduction

In a level set method [14], an interface is represented as the zero level set of a continuous real-valued func-
tion, called a level set function. Let / denote this function. Then / embeds the interface C as its zero level set:
C ¼ fx 2 Rmj/ðxÞ ¼ 0g. This representation retains geometric information of the interface, which can be
extracted using formulas involving derivatives and integrals of /. Furthermore, by adding a time variable,
the level set function can be used to capture a given dynamics of the interface using a time dependent PDE
in /. The location of the interface at time t in this case is the zero level set of / at that time:
CðtÞ ¼ fx 2 Rmj/ðx; tÞ ¼ 0g.

The level set function / is certainly not unique; for example a/, a 6¼ 0, is also a level set function for the
same interface. Thus one can ask for the best level set function according to some chosen criterion. In appli-
cations, even when a physically relevant level set function exists, that function may not satisfy the chosen cri-
terion and so should not be used. Instead, the commonly desired criterion for the form of the level set function
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.12.018

* Corresponding author.
E-mail address: lcheng@math.ucsd.edu (L.-T. Cheng).

mailto:lcheng@math.ucsd.edu

L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017 4003
is one that leads to small errors when numerically solving the time dependent PDE for the dynamics of the
interface, or when extracting the interface location. This form is most important to a level set method near
the interface of interest.

Analytic solutions to the time dependent PDE for / do not exist in all but the most trivial cases. Thus, one
needs to turn to numerical approximations and solutions. The errors of a large class of popular numerical
methods that operate on a discretization of the function over a grid, called finite differencing schemes, are typ-
ically calculated from Taylor expansions. This implies the derivatives of / have a bearing on the error, with
large magnitudes correlated to large errors. In addition to smoothness in /, one would thus desire that / avoid
derivatives with large magnitudes, most notably at or near the zero level set of interest.

On the other hand, for stability of representing the interface by the zero level set, the level set function
should not be too flat near its zero level set. For example, in the one-dimensional case, linear interpolation
to determine the location of a zero of / has error dependent on 1=/0ðnÞ, for some n. Thus small values of
j/0ðxÞj can lead to large errors. Following this, one would like the magnitude of the gradient of / to be away
from zero at or near the zero level set.

The process of reshaping a given level set function into a more desired form for stability and error is called
reinitialization. One commonly chosen form is the signed distance function d of / which satisfies the condi-
tions jrdj ¼ 1 and djC ¼ 0. Though the signed distance function does admit discontinuities in its derivative,
called kinks, it is widely used due to its natural geometric interpretation and the existence of fast numerical
methods for its construction. Furthermore, kinks only occur near the interface when the interface has large
curvatures or kinks, and in this case we may not be able to obtain small errors anyway. Reinitialization of
a given level set function to the corresponding signed distance function is also known as redistancing.

Algorithms for redistancing of level set functions began with the works of [1,7,8,22]. It is possible to cat-
egorize the algorithms into two distinct groups: those that work directly on the static boundary value problem
and those that manufacture a flow to obtain the signed distance function in the steady state. In the former,
solutions can be generated in near optimal times but the ability to obtain high orders of accuracy is suspect.
Examples include fast marching [11,19,25] and fast sweeping [24,27] methods. Flow based methods, on the
other hand, are more flexible and more easily parallelizable. Furthermore, accurate solutions can be obtained,
but only at a sometimes considerable expense to speed due to slow convergence to steady state. Examples
include the original work of [16,22]. There has been interest in approaches that can achieve higher order accu-
racy with minimal sacrifice of speed. The work of [17] introduces a locally second order accurate discretization
with subcell resolution. Also, the work of [5] uses bi-cubic interpolation and Newton’s iterations to approx-
imate the closest point on the interface to a point of the grid. Research, however, is ongoing in the topic and
improvements and alternatives are much needed.

There are two important factors in assessing the quality of the signed distance function constructed by cur-
rent algorithms. The first considers how stringently the boundary condition /jC ¼ 0 is enforced; in other
words, how much the interface is perturbed by numerical procedures. The second considers how closely the
differential equation jr/j ¼ 1 is satisfied and how many derivatives exist in the solution away from kinks.
The direct and flow based methods for redistancing also trade off advantages and disadvantages on these
two points. Direct methods tend to produce larger errors approximating the differential equation since high
order discretization is not convenient to implement in their framework. Flow based methods, on the other
hand, tend to excessively perturb the interface location when speed is not entirely sacrificed.

In a level set method, however, redistancing is not in general needed in all of space. Since the zero level set
is the actual quantity of interest, the needs of reinitialization can be served by using signed distance around
that location. This is especially true of local level set methods, whose computational domains, for efficiency,
are confined to be local to the interface of interest, usually in the form of a tube around the interface (see,
e.g. [16]). In this case, redistancing also serves to create that tube as the set of points a few gridsteps in dis-
tance from the interface. On the other hand, many other applications require signed distance functions in all
of space. In [4], for example, signed distance from the interface is used to determine the optimal strategy for
the path an observer should take to reveal a certain obscured point in space. Furthermore, the very foun-
dation of closest point methods [18] used for interface dynamics is based on knowledge of distance from
all gridpoints to the interface of interest. A good redistancing algorithm should be able to handle both cases
adequately.

4004 L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017
We include now some details of the original flow based method of [22], which we call standard level set
reinitialization, to describe its flexibilities and drawbacks. The flow proposed in that work takes the form
wt þ rðxÞðjrwj � 1Þ ¼ 0;
to be solved to steady state with initial condition wðx; 0Þ ¼ /ðxÞ. Here, rðxÞ is typically taken to be some reg-
ularized signum function of the initial data /0ðxÞ such as
rðxÞ ¼ sgn�ð/0ðxÞÞ ¼
/0ðxÞffi

ð/0ðxÞÞ
2 þ �2

q :
Note each different choice changes the solution w but leaves intact the steady state solution, which is the signed
distance function with magnitude of gradient equal to one. Non-zero � is required so that the coefficient of the
PDE is continuous and suitable for numerical computations.

If � is chosen to be independent of mesh size, then sgn�ð/0ðxÞÞ is as smooth as the initial data /0. However, a
quick glance at the characteristic equations suggests a source of inefficiency, since the characteristics emanat-
ing from the interface that impart signed distance to points in space travel at speed rðxÞ, which is small near
the interface since rðxÞ is zero at the interface. Thus, this choice of � may lead to slow speeds of convergence to
steady state, though high accuracy can be obtained.

At the other end of the spectrum, when � is chosen to be zero, then rðxÞ is far from zero almost everywhere
but discontinuous exactly at the interface. When numerical schemes are applied to the PDE, the discontinuities
in rðxÞ produce movement of the zero level set of w away from its original location at the interface. Thus, in
practice, � is usually chosen small but non-zero by letting it be a function of the mesh size Dx. Common choices
are CDx [22] and Cjr/0jDx [16], however, the convergence of the resulting PDE’s under these choices is not
known. In fact, the first choice is known to lead to non-convergent schemes when used on regularized Dirac-d
functions for computing line integrals [23]. For these line integrals, the work of [9] was able to introduce a grid
dependent scale of regularization parameters to achieve convergence; however, its results do not apply to the
redistancing PDE here, though the second choice of � above is similar in form to the choices of regularizations
found in [9]. Our numerical experiments on different choices of � indicate that the two above forms lead often
to constructed signed distance functions whose values and derivatives have large errors. Presently, it is not
clear what the best choice for the regularization parameter is.

We propose here a stable and convergent algorithm that does not require a regularization parameter and
allows for predictable behavior and high order accurate approximations. Furthermore, it is fast compared to
many of the manifestations of standard level set reinitialization. The equation that is used for obtaining signed
distance is the standard time dependent eikonal equation
ut þ jruj ¼ 0:
This allows us to apply the standard viscosity solution theory of [6] for proofs of convergence.
In Section 2, we derive the proposed algorithm and discuss its complexity. We also propose a generalization

of this algorithm to perform extension of values given on the interface into the ambient space in a subsection.
In Section 3, we present numerical results demonstrating the features of our introduced algorithms. Then, we
acknowledge contributions to our research from outside sources. Finally we add useful details in background
information.

2. The proposed algorithm

Suppose C is a smooth, compact hypersurface in Rm with a chosen orientation and non-zero reach. Then
there exists a unit normal vector field n : C! Rm. Furthermore, Rm can be partitioned into the disjoint union
X1 [C [X2, where oX1 ¼ oX2 ¼ C and n is the outer normal of oX1. We say X1 is the region enclosed by C.

Let u0ðxÞ be such that u0ðCÞ ¼ 0 and ru0ðxÞ=jru0ðxÞj ¼ nðxÞ for x 2 C. Consider the viscosity solutions of
jrdj ¼ 1; djC ¼ 0;
and
ut þ jruj ¼ 0; uðx; t ¼ 0Þ ¼ u0ðxÞ:

L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017 4005
Our algorithm originates from the following fact, proved in [13]: the T level set of d, which exists in X2, is
the zero level set of u at time T, for any T > 0. In other words, for T > 0
fx 2 RmjdðxÞ ¼ Tg ¼ fx 2 Rmjuðx; T Þ ¼ 0g:

Therefore, for x 2 X2, our algorithm sets /ðxÞ ¼ T for T satisfying uðx; T Þ ¼ 0. For x 2 X1, we reverse the ori-
entation of C and assign negative values for /ðxÞ in the same manner.

We now give details of this algorithm in a standard situation. Let /0ðxÞ be a given level set function whose
zero level set is C. The goal is to construct the signed distance function of /0 that is negative where /0 is neg-
ative and positive where /0 is positive. We may consider X2 ¼ fxj/0ðxÞ > 0g and X1 ¼ fxj/0ðxÞ < 0g. Our
algorithm then iterates as follows:

(1) Construct the flows defined by
ut þ jruj ¼ 0;

uðx; 0Þ ¼ /0ðxÞ:

�

and

vt þ jrvj ¼ 0;

vðx; 0Þ ¼ �/0ðxÞ:

�

(2) Set
/ðxÞ ¼
T ; if /0ðxÞ > 0 and uðx; T Þ ¼ 0;

�T ; if /0ðxÞ < 0 and vðx; T Þ ¼ 0:

�

(3) Repeat from the first step if desired using /0ðxÞ ¼ /ðxÞ. This may improve the solution in certain situ-
ations, as discussed further in Section 2.1.

When the PDE’s of the first step are discretized, the accuracy of the numerical schemes used in time inte-
gration plays an important role in the total accuracy of the algorithm. We discuss the numerical discretizations
we use along with the accuracy they provide in the following section.

2.1. Discretizations and accuracy

Our numerical method of choice for discretization of the time dependent eikonal equation is a standard
high resolution scheme for solving Hamilton–Jacobi equations. We approximate the Hamiltonian by the
monotone Godunov Hamiltonian [15] and use fifth order WENO [12] for spatial derivatives. Third order
TVD Runge–Kutta [20] or fourth order SSP Runge–Kutta [21] is then applied to the resulting system of
ODE’s.

Without loss of generality, fix x 2 X2; the case x 2 X1 is similar. While the time dependent eikonal equation
solver iterates in time, the values of u are recorded at each of these times at x. High order interpolation in time
of u then allows for the determination of when u becomes zero. This is the distance away from the interface
and our value for /ðxÞ. The type of interpolation scheme chosen, however, should be able to handle the case
where u may not be smooth in time. This occurs, for example, when a kink travels through the point x, leaving
u only piecewise smooth in time. To illustrate this with an example, let u0ðxÞ ¼ minfx;�2ðx� 2Þg and consider
expressly the location x ¼ 1. The viscosity solution is uðx; tÞ ¼ minfx� t;�2ðx� 2Þ � 2tg. Thus
uð1; tÞ ¼
1� t; t 6 1;

2� 2t; t > 1;

�

which has a discontinuity in the time derivative at t ¼ 1.
In light of this, in order to achieve an accurate approximation of the zero of u at x, we turn to high order

ENO schemes for our interpolation and use Newton’s method on the resulting high degree polynomial to
determine its root. Though this technique works, we consider it a drawback of our approach that the form

4006 L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017
of /0 away from the zero level set affects accuracy. This can be problematic in higher dimensions, where more
complicated kink structures are present in functions. Details of ENO interpolation are given in Appendix A.

Thus we have included the third step of our algorithm involving iteration using the latest generated / as
initial condition in the flow. Since / is a better approximation of the signed distance function, it may have
a better form than that of /0, leading to fewer kinks in u and a more accurate construction of distance. Deter-
mination on when the third step should be used can be made from the smoothness of the time derivatives of u.

In actual implementation, at each point x, we need only store values of u neighboring the location where u

becomes zero. The size of this neighborhood depends on the order of the interpolation scheme desired for cap-
turing that zero. Let U nðxÞ denote the value computed by our scheme to approximate uðx; tnÞ. Then at x, we
store the values ðU n�r;U n�rþ1; . . . ;UnþsÞ, where n is such that U n and U nþ1 are different signs. These stored
values are the ones that can be used by the interpolation scheme for finding the root in ½tn; tnþ1�. For example,
for third order ENO interpolation, we may take r ¼ 2 and s ¼ 3, storing ðU n�2;U n�1;U n;U nþ1;U nþ2;U nþ3Þ.

Close to the interface fxj/0ðxÞ ¼ 0g, there may not be enough values for an interpolation scheme to use. For
example, if n ¼ 0, then U 0 and U 1 are of different signs and we cannot take any r > 0. In order to use high order
interpolation, we insert values from the approximation of v. Let V nðxÞ denote the value computed by our scheme
to approximate vðx; tnÞ. Then we set U n�j ¼ �V j�n when n� j < 0. This makes sense because the level sets of u,
initially those of /0, can be viewed as flowing in their outward normal directions while the level sets of v, also
initially those of /0, can be viewed as flowing in their inward normal directions. Note v, however, does not come
from running the equation for u backward in time since this generates a different weak solution. This fact does
not seem to affect the accuracy of our algorithm in the experiments we conduct in Section 3.

To summarize the basic tools needed in our algorithm, we require just a solver for the PDE associated to
outward motion in the normal direction at unit speed and a one-dimensional interpolation scheme. The basic
steps of our algorithm involve solving two of these PDE’s and saving the solutions. Interpolation in time at
every point in space is then used in conjuction with a root finder to extract the value of signed distance. This
outline reveals the simplicity in implementing our approach with existing tools.

2.2. Complexity

Consider a uniform grid placed in space Rm with N points in each dimension. Let Dx denote the stepsize
length of the grid in space and Dt that in time. The complexity of our proposed algorithm is directly linked
to the length of time it takes characteristics emanating from the zero level set to reach all points of the com-
putational domain. With a stability condition such as Dt ¼ C0Dx used in the numerical scheme, the cost in
number of operations is OðN � NmÞ coming from OðNÞ time steps of OðN mÞ computations over the grid in
Rm. The operations associated to interpolation, Oð1Þ for each point in the grid, and Newton’s method,
Oð1Þ for each point in the grid for a first or second order initial guess and quadratic convergence to approx-
imate the root up to the desired order, contribute only to lower order terms in the complexity.

We now compare this to the complexity of the standard level set reinitialization routine under the method
of characteristics. Consider the one-dimensional case with interface at x ¼ 0. Let /0ðxÞ be an increasing level
set function with /0ðxÞ > 0 for x > 0 and /0ðxÞ < 0 for x < 0. Standard level set reinitialization follows the
PDE
wt þ
/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/2
0 þ �2

q ðjrwj � 1Þ ¼ 0;
with wðx; 0Þ ¼ /0ðxÞ. Without loss of generality, consider this equation for x 2 ½�2; 2�. We look in detail at a
semi-discrete calculation of distance values for x > 0.

Using the method of characteristics, consider location x and time t and the characteristic satisfying cðtÞ ¼ x.
Then wðx; tÞ is wðcð0Þ; 0Þ plus the distance traveled by the characteristic from time 0 to t. Therefore, if a char-
acteristic emanating from the interface reaches x, then at that time, and thereafter, wðx; tÞ will have the value of
distance away from the interface. Technically, however, the characteristic never reaches x since at the inter-
face, the characteristic has vanishing velocity. We may consider instead the characteristic emanating from a
point d > 0 close to 0 and look at obtaining distance values for x 2 ðd; 2�. This characteristic c satisfies

L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017 4007
dc
dt
¼ /0ðcÞffi

ð/0ðcÞÞ
2 þ �2

q ;
with cð0Þ ¼ d. Taking d ¼ Dxp, for example, will preserve pth order accuracy of the approximation /0ðdÞ � d,
since d is the exact distance from the interface and
/0ðdÞ ¼ /0ð0Þ þ d/00ðnÞ ¼ dþ dð/00ðnÞ � 1Þ ¼ dþOðDxpÞ;

for some n 2 ½0; d�.

Note
/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

0 þ �2

q 6 1 6 x;
for x P 1. For x 2 ½0; 1Þ, we know
d

dx
/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/2
0 þ �2

q
0
B@

1
CA ¼ �2/00

ð/2
0 þ �2Þ

3
2

6
j/00j
�
;

so
/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

0 þ �2

q 6
K
�

x;
where K ¼ supy2½0;1Þj/00ðyÞj > 0. Thus
/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

0 þ �2

q 6 LðxÞ ¼
Mx; for x 2 0; 1

M

� �
;

1; for x 2 1
M ; 2
� �

;

(

where M ¼ maxfK=�; 1g, and so
dc
dt
6 LðcÞ:
Thus a lower bound for the time it takes for c to reach 1=M can be calculated from
deMt ¼ 1

M
;

which gives the lower bound as logð1=ðdMÞÞ=M , or logð1=ðdMÞÞ=ðMDtÞ time steps. Thereafter, the character-
istic travels from 1=M to 2 requiring a time greater than or equal to 2� 1=M , or ð2M � 1Þ=ðMDtÞ time steps.
So the characteristic starting from d reaches the end of the domain at 2 in greater than or equal to
logð1=ðdMÞÞ þ 2M � 1

MDt
;

time steps. For the case where � is small, such as when �! 0 as Dx! 0, M ¼ K=� and this number becomes
� logð�=ðdKÞÞ þ 2K � �
KDt

:

With the stability requirement Dt ¼ C0Dx and d ¼ Dxp, the number of time steps is OðN log NÞ for � ¼ 1 and
OðNÞ for � ¼

ffiffiffiffiffiffi
Dx
p

and Dx. Thus, the maximum total efficiency of standard level set reinitialization ranges from
OðN � N log NÞ to OðN � NÞ in one spatial dimension and OðN � N m log NÞ to OðN � N mÞ in m spatial dimen-
sions. Our proposed algorithm is of equal or slightly better efficiency.

However, these numbers alone do not tell the whole story of efficiency. To generate distance values in the
shrinking tube ð0;CDx�, say at x ¼ CDx for C constant, requires at least OðN log NÞ time steps for � ¼ 1,
Oð

ffiffiffiffi
N
p

log NÞ time steps for � ¼
ffiffiffiffiffiffi
Dx
p

, and Oðlog NÞ time steps for � ¼ Dx. This means standard level set

4008 L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017
reinitialization spends a lot of effort in constructing distance close to the interface, sometimes equal to the
amount of effort spent in the rest of the domain. In comparison, our proposed algorithm just requires Oð1Þ time
steps in this case. Thus, our approach can be much faster local to the interface of interest, and even though the
case � ¼ Dx is nearly as fast, it is known to produce larger errors, especially in derivatives of distance values.

In one last comparison, we note that our algorithm is able to determine when the constructed signed dis-
tance value at a location x is accurately approximated, namely shortly after the values of u or v become zero
there. Standard level set reinitialization, on the other hand, is not able to provide a good estimate because its
convergence speed can vary greatly. Furthermore, if we iterate our algorithm a few time steps past a chosen
time T, we know we have accurately approximated signed distance at all x of distance T away from the inter-
face. Standard level set reintialization has no such ability to gauge its progress. These issues become evident
when we compare the errors of our proposed algorithm with that of standard level set reinitialization in Sec-
tion 3.4.

2.3. Extension of values

It is possible in our proposed algorithm to add the ability to extend values that exist on the interface off into
ambient space. Let /0 denote a level set function representing the interface of interest and let f0ðxÞ be another
function given in ambient space whose values at the interface are of interest. In other words, f0 is implicitly
defining values on the interface. Just as we desire a better form for /0, choosing the signed distance function
d, we may also desire a better form for f0, choosing for it to be constant on the integral curves of rd, i.e. using
instead f satisfying
rd � rf ¼ 0:
Though discontinuous at kinks of d, this is a natural form for extended values, describing extension off the
interface constant in normal directions [28]. In addition, it imparts stability under perturbations to the implicit
representation of values on the interface. Note these are the same advantages that signed distance functions
have for representing interfaces. In fluids, the values of the function may refer to the amount of surfactants at
a fluid–fluid interface [26]. In level set methods, the values may refer to calculated velocities on the interface
[2,3].

Extension of values can be viewed as directly linked to construction of signed distance, with the static PDE
replace by rd � rf ¼ 0. Even standard level set reinitialization can be translated as iteration to steady state of
qt þ sgnð/0Þrd � rq ¼ 0;
with qðx; 0Þ ¼ f0ðxÞ, as described in [3,28]. Thus, our proposed algorithm for constructing signed distance can
also be modified to extend values off the interface. We use the fact that for x 2 X2, the solution gðx; tÞ of
gt þrd � rg ¼ 0;
with gðx; 0Þ ¼ f0ðxÞ satisfies f ðxÞ ¼ gðx; T Þ, where T is such that uðx; T Þ ¼ 0. To fit this into the steps we had
for generating u, we note that since u satisfies fxjuðx; tÞ ¼ 0g ¼ fxjdðxÞ ¼ tg, we have ruðx; tÞ=jruðx; tÞj ¼
rdðxÞ for x at the zero level set of u at time t.

Thus we interweave the following steps for value extension into our proposed algorithm:

(1) Construct the flows defined by
gt þ ru
jruj � rg ¼ 0;

gðx; 0Þ ¼ f0ðxÞ;

(

and

ht þ rv
jrvj � rh ¼ 0;

hðx; 0Þ ¼ f0ðxÞ:

(

Solve them at the same time as the PDE’s for the signed distance function.

L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017 4009
(2) Set
Table
Errors

Grid s

50
100
200
400
800
f ðxÞ ¼
hðx; T Þ; if /0ðxÞ > 0 and uðx; T Þ ¼ 0;

gðx; T Þ; if /0ðxÞ < 0 and vðx; T Þ ¼ 0:

�

Use the T computed for construction of the signed distance function.

(3) Repeat from the first step using /0ðxÞ ¼ /ðxÞ and f0ðxÞ ¼ f ðxÞ if desired. This may improve the solution.

Note ENO interpolation is extremely important in this application since the solution is generally discontin-
uous at kinks of the signed distance function. We show numerical results of this approach alongside results for
the signed distance function in the next section.

3. Numerical study

3.1. Simple case

Let
/0ðx; yÞ ¼ exþy x2 þ y2 � 1

4

� �
;

so that the interface of interest is a circle centered at the origin with radius 1/2. We use our proposed algorithm
to construct the values of the signed distance function of magnitude less than or equal to 0.301636 so that the
kink in the solution at the origin is avoided. In addition, we attempt to extend the values of
f0ðxÞ ¼ exþy ;
off the interface constant in normal directions. We expect to be able to achieve a high order of accuracy in the
approximation using SSP-RK of fourth order in time, WENO of fifth order in space, and fourth order ENO
interpolation [10]. Table 1 collects our results, showing orders of accuracy of roughly four in the infinity norms
of absolute errors in the constructed signed distance function and extended values. Table 2 shows the absolute
errors of the first and second derivatives of the constructed signed distance function. These derivatives are
computed using second order central differencing, a natural choice to use in finite differencing. Thus, orders
of accuracy of roughly two, the maximum we can hope to obtain, are seen in these results.

3.2. Additional iterations

Let
/0ðx; yÞ ¼ ðsinð4pxÞ sinð4yÞ þ 2Þðex2þy2�1=4 � 1Þ;

so that the interface of interest is again a circle centered at the origin with radius 1/2. We use our proposed
algorithm to construct the values of the signed distance function of magnitude less than or equal to 0.301636.
In addition, we attempt to extend the values of
f0ðxÞ ¼ exþy ;
1
and orders of accuracy for the constructed signed distance function and extended values

ize Distance error Order Extend error Order

0.00014897 0.000977022
4:64561� 10�6 5.0030 6:20035� 10�5 3.9780
1:09534� 10�7 5.4064 4:67794� 10�6 3.7284
1:64001� 10�9 6.0615 1:77818� 10�7 4.7174
8:04658� 10�11 4.3492 9:59511� 10�9 4.2120

Table 2
Errors and orders of accuracy for the first and second derivatives of the constructed signed distance function

Grid size First derivative error Order Second derivative error Order

50 0.00567636 0.12875
100 0.00169254 1.7458 0.0255799 2.3315
200 0.000447995 1.9176 0.00286245 3.1597
400 0.000115987 1.9495 0.000729368 1.9725
800 2:99124� 10�5 1.9551 0.000188086 1.9553

4010 L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017
off the interface constant in normal directions. In this case, the constructed signed distance function is unable
to achieve an order of accuracy of four with the same numerical schemes as the previous example. In fact, the
errors form the vector
Table
Errors

Grid s

50
100
200
400
800
ð0:00972792; 0:00160612; 0:000319585; 4:52933� 10�5; 7:2604� 10�6Þ;

with orders of accuracy
ð2:5986; 2:3293; 2:8188; 2:6412Þ;

for a grid starting with 50 points in each dimension and double this for each following entry.

A closer investigation shows that a kink develops close to the zero level set of u at a certain point and time.
This kink diminishes the accuracy of the approximation schemes and leads to large infinity norm errors. The
remedy for this is the third step of our algorithm, which repeats computations using the latest constructed
forms for initial conditions. Tables 3 and 4 show the errors of the signed distance function, its derivatives,
and extended values off the interface after one additional iteration. The progression of error at a grid with
50 points in each dimension under more iterations follows the vector
ð0:00972792; 0:000631518; 0:000331136; 0:000291222; 0:000298418; 0:000301849Þ;

showing iterations one through six. In the course of 200 iterations, the error oscillates slightly but remains
mostly stable, giving an error of 0.000277127 in the end.

3.3. Kinks

Let
/0ðx; yÞ ¼ minfðxþ 0:2Þ2 þ y2 � ð0:3Þ2; ðx� 0:2Þ2 þ y2 � ð0:3Þ2g

so that the interface of interest is a circle of radius 0.3 centered at (�0.2,0) in the left half plane and a circle of
radius 0.3 centered at (0.2,0) in the right half plane. Thus there is a kink in the interface at x ¼ 0. We use our
proposed algorithm to construct the values of the signed distance function of magnitude less than or equal to
0.301636. In this case, we expect only first order accuracy using the infinity norm due to the kink in the inter-
face and the signed distance function. The errors of the constructed signed distance function starting with a
grid with 50 points in each dimension, then repeatedly doubling up to 800 points, are
ð0:0060961; 0:00322084; 0:00168399; 0:00085892; 0:00043338Þ;

showing first order in the orders of accuracy
ð0:9204; 0:9356; 0:9713; 0:9869Þ:
3
and orders of accuracy for the constructed signed distance function and extended values with an additional iteration

ize Distance error Order Extend error Order

0.000631518 0.00266801
1:17956� 10�5 5.7425 0.000150751 4.1455
5:82679� 10�7 4.3394 1:06848� 10�5 3.8185
4:02468� 10�8 3.8558 7:44637� 10�7 3.8429
2:7407� 10�9 3.8763 6:3016� 10�8 3.5627

Table 4
Errors and orders of accuracy for the first and second derivatives of the constructed signed distance function with an additional iteration

Grid size First derivative error Order Second derivative error Order

50 0.0120466 0.310691
100 0.000150751 2.7492 0.0353025 3.1360
200 0.000468071 1.9366 0.00618495 2.5129
400 0.000116647 2.0046 0.00179208 1.7871
800 2:99378� 10�5 1.9621 0.000435015 2.0425

L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017 4011
3.4. Comparison

The results of standard level set reinitialization varies with the choice of regularization for its signum func-
tion. In general, our experiments show that � ¼

ffiffiffiffiffiffi
Dx
p

produces better error than � ¼ Dx and � ¼ jr/0jDx.
However, the form of /0 still greatly influences the speed of convergence of the PDE
Table
Errors

Grid s

50
100
200
400
800

Result
wt þ sgn�ð/0Þðjrwj � 1Þ ¼ 0:
As mentioned in Section 2.2, it is difficult to estimate how many time steps are actually needed to generate
results of a certain order of accuracy. This property affects all the experiments we present when comparing
results of standard level set reinitialization with those of our algorithm.

One example of this is the case considered in Section 3.1. Using the same number of total time steps as in
our algorithm on the same problem, the results of standard level set reinitialization with � ¼

ffiffiffiffiffiffi
Dx
p

are shown in
Table 5. Errors in the constructed signed distance function show eventual slow convergence and compares
poorly to our results in Table 1. Errors of the derivative and second derivative are even slower in their con-
vergence and are again poor compared to our results in Table 2. In fact, it takes 97 time steps for a grid with 50
points in each dimension before standard level set reinitialization achieves the same size error in signed dis-
tance function as our algorithm does using 24 total time steps. Subsequently, doubling this number every time
the number of points in the grid in each dimension is doubled, the errors of standard level set reinitialization
are
ð0:000141764; 1:72627 � 10�5; 3:87304 � 10�7; 3:43358 � 10�8Þ;

and the corresponding orders of accuracy are
ð3:0378; 5:4780; 3:4957Þ:

This can be compared to our errors found in Table 1, showing that even in this situation, the errors of stan-

dard level set reinitialization fall behind and cannot match ours on the finer grids.
However, now considering the case in Section 3.2 and once again using the same number of time steps as

our algorithm for the same problem, standard level set reinitialization performs as well as ours, with errors
ð0:00188958; 0:000899057; 0:000333704; 5:58918 � 10�5; 5:33776 � 10�6Þ;

and orders of accuracy
ð1:0716; 1:4298; 2:5779; 3:3883Þ:
5
and orders of accuracy for results of standard level set reinitialization

ize Distance error Order First derivative error Order Second derivative error Order

0.0324433 0.103063 0.924852
0.02128 0.5995 0.0811287 0.3452 0.767022 0.2700
0.0118589 0.8435 0.0569891 0.5095 0.585 0.3908
0.00511372 1.2135 0.0325503 0.8080 0.342561 0.7721
0.00165395 1.6285 0.0140648 1.2106 0.162482 1.0761

s can be compared to those of Tables 1 and 2.

Table 6
Errors and orders of accuracy for results of standard level set reinitialization

Grid size Distance error Order First derivative error Order Second derivative error Order

50 0.00112127 0.0233927 1.20496
100 0.000184584 2.6028 0.00504454 2.2133 0.569893 1.0802
200 1:21541� 10�5 3.9248 0.000750778 2.7483 0.140806 2.0170
400 4:02073� 10�7 4.9178 0.000123405 2.6050 0.0211957 2.7319
800 1:81624� 10�8 4.4684 2:99856� 10�5 2.0411 0.00375 2.4988

Results can be compared to those of Tables 3 and 4.

4012 L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017
In our approach, we resorted to performing an additional iteration to achieve the order of accuracy we
expect to get. When standard level set reinitialization uses time steps equivalent to the new total, including
those of the additional iteration, results are also comparable and are shown in Table 6. Specifically, the errors
in constructed distance and second derivatives are roughly an order of magnitude better and first derivatives
are very similar.

As for variations of the form we tested, in both the above example cases, the PDE does not quite reach
steady state for the choices of � ¼ Dx and � ¼ jr/0jDx for certain gridsizes. In fact, this is true when
� ¼

ffiffiffiffiffiffi
Dx
p

as well, though to a lesser extent. Furthermore, the errors in constructed signed distance function
and its derivatives when � ¼ Dx or � ¼ jr/0jDx is used are much larger than when � ¼

ffiffiffiffiffiffi
Dx
p

. These undesirable
characteristics, we believe, are due to perturbation of the interface location during the flow. Thus, speed is
sacrificed for accuracy when � ¼

ffiffiffiffiffiffi
Dx
p

and accuracy sacrificed for speed when � ¼ Dx and � ¼ jr/0jDx.
Other variations we tested include replacing sgn�ð/0Þ in the PDE by sgn�ðdÞ, where d is the exact signed

distance function and replacing /0 with the latest constructed signed distance function after each time step.
For these changes, results are often better but surprisingly sometimes worse. Deeper analysis is needed to
determine the reasons behind this behavior.

From these and additional experiments run on other examples, we conclude that our algorithm at worst
performs just as well as standard level set reinitialization for constructing signed distance functions over a
fixed region. Even in this case, however, our errors are usually better, especially on coarser grids. On the other
hand, in general, our algorithm usually performs noticeably better. In the case of a shrinking tube such as
encountered by local level set methods, our approach is obviously superior to that of standard level set reini-
tialization. Numerical results to back up the theoretical remarks made in Section 2.2 show that standard level
set reinitialization does not converge when the number of time steps is fixed as the grid becomes finer and the
tube becomes thinner. Our algorithm, on the other hand, displays errors such as
ð0:00014897; 1:73394� 10�7; 7:88333� 10�9; 4:3846� 10�10; 2:57252� 10�11Þ;

with orders of accuracy
ð9:7468; 4:4592; 4:1683; 4:0912Þ;

for the function of Section 3.1 in a tube of radius 10Dt under 12 time steps.

The only advantages of standard level set reinitialization are in flexibility in creating variations, some of
which may be better than what is currently available; slightly less memory usage; and the possibility that even
with low order time discretization, the results in steady state may achieve high order of accuracy from the spa-
tial discretization. This, if true, may increase the efficiency of standard level set reinitialization and make it
more competitive with our approach. Our experiments using third order TVD-RK in time hint that this
may be true but for lower order discretizations, the larger errors in time may end up contributing more sig-
nificantly to the final error.

3.5. Three-dimensions

Our algorithm stays the same in higher dimensions. In three-dimensions, we consider an example with
/0ðx; y; zÞ ¼ exþyþzðx2 þ y2 þ z2Þ:

L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017 4013
As the number of computations becomes too large for fine grids in three-dimensions, we consider smaller
grids with 25, 50 and 100 points in each dimension. The errors in the computed signed distance function for
values of magnitude less than or equal to 0.301636 are given in the vector
ð0:000980799; 0:000225319; 1:26161 � 10�5Þ;

with corresponding orders of accuracy
ð2:1220; 4:1586Þ:

Thus we achieve high order of accuracy in three-dimensions as well as the grid is made finer.

3.6. Level set motion

Finally, we consider the results of redistancing in the level set method. In this case, redistancing may not
actually be needed, only reinitialization that will fix any negative changes introduced in the level set function
during evolution, allowing for accurate deformation and retrieval of the zero level set. Thus, it is possible for
an algorithm that is poor in achieving the signed distance form to be adequate in the role of reinitialization for
the level set method. This independence of results means we need to retest our algorithm versus standard level
set reinitialization in the level set method setting. We consider two cases in interface dynamics, the first a gentle
level set deformation under a parabolic evolution equation and the second a more turbulent level set defor-
mation under a hyperbolic evolution equation.

For the first case, we consider mean curvature flow on all level sets of the level set function in two-dimen-
sions. We start with the initial level set function
/0ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:7;
with circular level sets about the origin and specifically the circle of radius 0.7 as its zero level set. The flow
then shrinks each of these circles at a rate equal to their mean curvature. Exact solutions are easily computed.

The evolution equation on the level set function / enforcing this type of motion takes the form
/t ¼ r � r/
jr/j

� �
jr/j:
Numerically, this parabolic equation can be solved using first order forward Euler in time and second order
central differencing in space with stability condition Dt ¼ C0Dx2 for a second order accurate scheme.

In order to keep computation of the zero level set also high order accurate, partial redistancing of the level
set function may be occasionally performed. The amount of redistancing needed depends on how strongly the
level set function deforms near its zero level set. Usually, however, this is not studied in detail in favor of just
guessing the amount. Conservative redistancing provides more guarantee of well-behaved gradients at the zero
level set though it hurts the efficiency of the level set method as a whole. Concentrating on accuracy rather
than efficiency, we thus choose to enforce signed distance form in a tube around the interface at every time
step in our examples in this section. This is also a realistic situation, used in creating the tube where compu-
tations are performed in local level set methods. For a fair comparison, we also iterate all the methods the
same number of times in redistancing.

For the motion we described above, the deformation is gentle for reasonable times and so even without
reinitialization, errors in the location of the interface (distance from exact interface calculated using fourth
order ENO interpolation) and errors in the normal vectors and mean curvature values there (infinity norm
errors calculated using interpolated values of second order central differencing) are all second order accurate.
We test whether addition of the different reinitialization schemes will negatively affect these results.

Tables 7 and 8 collect the results for the errors in the same situation when our algorithm and standard level
set reinitialization with the commonly used regularization � ¼ Dx (see, e.g. [28]), respectively, are used for full
reinitialization between each time step of interface evolution. In comparison, we see that on fine grids, the
errors in locations and normal vectors are the same; however, they differ on the coarser grids, with standard
level set reinitialization faring a bit worse. Of greater concern are the mean curvature computations, where
standard level set reinitialization displays first order accuracy while ours is closer to second order, with errors

Table 7
Errors and orders of accuracy for our approach used as reinitialization in a level set method in the presence of gentle deformations

Grid size Loc. error Order Norm vec. error Order Mean curv. error Order

50 6:55482� 10�5 0.000362656 0.000320228
100 1:6182� 10�5 2.01817 9:12746� 10�5 1.99032 8:42138� 10�5 1.92697
200 4:04964� 10�6 1.99852 2:29147� 10�5 1.99394 2:12348� 10�5 1.98763
400 1:01258� 10�6 1.99976 5:73125� 10�6 1.99935 5:32579� 10�6 1.88951

Results can be compared to those of Table 8.

Table 8
Errors and orders of accuracy when standard level set reinitialization is used as in a level set method in the presence of gentle deformations

Grid size Loc. error Order Norm vec. error Order Mean curv. error Order

50 2:27078� 10�5 0.000967392 0.00675209
100 2:79235� 10�5 �0.298292 0.000109602 3.14183 0.000413596 4.02904
200 4:20542� 10�6 2.73116 2:29921� 10�5 2.25306 0.000205376 1.00995
400 1:09049� 10�6 1.94727 5:70864� 10�6 2.00992 0.000107407 0.93518

Results can be compared to those of Table 7.

4014 L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017
several orders of magnitude smaller. Thus, this example of mild deformation in interface dynamics shows that
standard level set reintialization used in the level set method may introduce harmful effects at coarse grid levels
and for mean curvature values. These effects are not seen when our approach is used for reinitialization, where
the results are closer to producing the desired second order scheme for interface dynamics in this setting.

For the second case, we consider a flow with stronger deformations of level sets, under motion in two-
dimensional space in outward normal directions according to speed
vn ¼ 1þ 0:5 sin / cosð2pxÞ cosð2pyÞ:

We start with the initial level set function
/0ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:2;
with circular level sets about the origin and specifically the circle of radius 0.2 as its zero level set. The flow in
this case preserves only the zero level set’s circular shape, growing it outwards at unit speed.

The level set evolution equation for this motion takes the form
/t þ vnjr/j ¼ 0:
Numerically, this hyperbolic equation can be solved using SSP Runge–Kutta of fourth order in time and
WENO of fifth order in space for fourth order accurate solutions of the level set function. Because of the
strong deformation of level sets for this flow, extraction of the zero level set of the level set solution using this
scheme leads to a reduction of accuracy. Reinitialization is thus essential in this case for preserving accuracy.

Tables 9 and 10 collect the results for the errors in the same situation when our algorithm and standard
level set reinitialization with regularization � ¼ Dx, respectively, are used for full reinitialization between each
time step of interface evolution. In comparison, this time the errors in calculating interface location are sig-
nificantly worse in the case of standard reinitialization, with large magnitudes and poor orders of accuracy.
Large errors are also seen at each level, for each error on each grid. In addition, computed orders of accuracy
remain low, as in the previous example, on coarse grids. As a whole, the results of the level set method with
standard reinitialization are poor all around and stand in stark contrast to the results with the use of our
approach. Thus, in the presence of strong deformations, standard level set reinitialization seems to be unable
to help the level set method achieve high order results. Our approach, in comparison, is closer to producing the
desired fourth order scheme for interface dynamics in this setting.

From such studies, we see that not only is our approach more favorable in generating highly accurate
signed distance functions, but this carries over to the problem of reinitialization in level set methods for accu-
rately capturing interfaces under deformations.

Table 9
Errors and orders of accuracy for our approach used as reinitialization in a level set method in the presence of strong deformations

Grid size Loc. error Order Norm vec. error Order Mean curv. error Order

50 1:41692� 10�5 0.000514908 0.00192476
100 1:18015� 10�6 3.58572 0.000127775 2.01071 0.0002987 2.68791
200 4:16461� 10�8 4.82465 3:22041� 10�5 1.98829 5:91015� 10�5 2.33743
400 2:44989� 10�9 4.08739 8:09916� 10�6 1.9914 1:56404� 10�5 1.91792

Results can be compared to those of Table 10.

Table 10
Errors and orders of accuracy when standard level set reinitialization is used as in a level set method in the presence of strong deformations

Grid size Loc. error Order Norm vec. error Order Mean curv. error Order

50 0.000128812 0.00115517 0.0608501
100 5:88727� 10�5 1.1296 0.000923233 0.323338 0.0448977 0.438618
200 2:21538� 10�5 1.41004 0.00042986 1.10283 0.0230084 0.964481
400 4:3911� 10�6 2.3349 8:44376� 10�5 2.34791 0.00362632 2.66558

Results can be compared to those of Table 9.

L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017 4015
4. Conclusion

We propose an algorithm for constructing approximate signed distance functions for a given interface. The
algorithm is as efficient as standard level set reinitialization in general, and more efficient for specialized pur-
poses such as when only local computations are of interest. Furthermore, the approximate functions con-
structed by our algorithm have high order of accuracy and smooth derivatives. With fourth order
differencing in time, fifth order in space, and fourth order interpolation, we can construct fourth order approx-
imations with at least second order first and second derivatives. In addition, slight modification of the algo-
rithm gives high order extension of values off the interface constant in normal directions. Applications of our
results include providing an initialization for closest point methods, allowing higher order results with level set
methods, and tackling problems with values defined on interfaces. We seek to apply our approach to these
problems as part of future research.

Acknowledgments

The work of the first author is supported by NSF DMS-0511766, NSF DMS-0619173 and a Sloan Foun-
dation Fellowship. The work of the second author is supported by NSF DMS-0513394 and a Sloan Founda-
tion Fellowship.

Appendix A

A.1. ENO interpolating polynomial

Consider the function uðtÞ in ½a; b�. Let
a ¼ t0 < t1 < � � � < tn ¼ b;
denote a uniform grid over ½a; b� with stepsize Dt. Furthermore, let ui denote uðtiÞ for all i. We consider here the
details involved in finding the root of u in ½tj; tjþ1� when ujujþ1 6 0.

For a second order accurate approximation to the location of the root, we may construct the linear inter-
polant p1ðtÞ through the points ðtj; ujÞ and ðtjþ1; ujþ1Þ, then solve the linear equation corresponding to p1ðtÞ ¼ 0
for the location of the root.

Similarly, for a third order accurate approximation, we may consider constructing a quadratic interpolant
instead; however, there is no natural choice for which points ðti; uiÞ to use for this. For example, it is natural to

4016 L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017
use ðtj; ujÞ and ðtjþ1; ujþ1Þ, since they are close to the root of interest, but the choice of the next closest,
ðtj�1; uj�1Þ or ðtjþ2; ujþ2Þ, is not fixed. Use of either one gives a quadratic interpolant that can be used to find
the location of the root.

In fact, either choice leads to a third order accurate approximation of the root when u is smooth. When u is
not smooth, however, it is better to pick the one that avoids discontinuous derivatives in its interval. The ENO
idea carries this through by building up the interpolating polynomial in Newton’s form and using the Newton
divided difference corresponding to the highest degree term in the polynomial as a smoothness indicator.

Thus the ENO scheme builds its quadratic interpolating polynomial p2ðtÞ by starting with the linear inter-
polating polynomial
p1ðtÞ ¼ u½tj� þ u½tj; tjþ1�ðt � tjÞ;

and picking out the smoother option by choosing
p2ðtÞ ¼ p1ðtÞ þ ðt � tjÞðt � tjþ1Þ �
u½tj�1; tj; tjþ1�; if ju½tj�1; tj; tjþ1�j 6 ju½tj; tjþ1; tjþ2�j;
u½tj; tjþ1; tjþ2�; if ju½tj�1; tj; tjþ1�j > ju½tj; tjþ1; tjþ2�j:

�

The notation used here is the usual one involving Newton divided differences found in Newton’s form for
an interpolating polynomial, with u½tk� ¼ uðtkÞ for all k and
u½tk; tkþ1; . . . ; tkþr; tkþrþ1� ¼
u½tk; . . . ; tkþr� � u½tkþ1; . . . ; tkþrþ1�

tk � tkþrþ1

;

for r ¼ 0; 1; 2; . . . for a recursive definition. Higher degree ENO interpolating polynomials are built by contin-
uing this process.

Classical root finding methods can then be used to extract the roots of these polynomials. We use Newton’s
method with initial guesses of either t ¼ tj or t ¼ tjþ1, which are first order approximations with respect to grid
size, or even better the root generated from linear interpolation, which is second order. A few additional iter-
ations then allow us to capture the root to whatever order of accuracy we desire.

References

[1] D. Adalsteinsson, J.A. Sethian, A fast level set method for propagating interfaces, J. Comput. Phys. 118 (1995) 269–277.
[2] D. Adalsteinsson, J.A. Sethian, The fast construction of extension velocities in level set methods, J. Comput. Phys. 148 (1999) 2–22.
[3] S. Chen, B. Merriman, S. Osher, P. Smereka, A simple level set method for solving Stefan problems, J. Comput. Phys. 135 (1997)

8–29.
[4] L.-T. Cheng, Y.-H. Tsai, Visibility optimizations using variational approaches, Commun. Math. Sci. 3 (3) (2005) 425–451.
[5] D.L. Chopp, Some improvements of the fast marching method, SIAM J. Sci. Comput. 23 (1) (2001) 230–244.
[6] M.G. Crandall, P. Lions, Viscosity solutions of Hamilton–Jacobi equations, Trans. Am. Math. Soc. 277 (1) (1983) 1–42.
[7] A. Dervieux, F. Thomasset, A finite element method for the simulation of Rayleigh–Taylor instability, Lect. Notes Math. 771 (1979)

145–158.
[8] A. Dervieux, F. Thomasset, Multifluid incompressible flows by a finite element method, Lect. Notes Phys. 11 (1981) 158–163.
[9] B. Engquist, A.-K. Tornberg, Y.-H. Tsai, Discretization of Dirac delta functions in level set methods, J. Comput. Phys. 207 (1) (2005)

28–51.
[10] A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly high-order accurate essentially nonoscillatory schemes. III, J.

Comput. Phys. 71 (2) (1987) 231–303.
[11] J. Helmsen, E. Puckett, P. Colella, M. Dorr, Two new methods for simulating photolithography development in 3D, Proc. SPIE 2726

(1996) 253–261.
[12] G.S. Jiang, D. Peng, Weighted ENO schemes for Hamilton–Jacobi equations, SIAM J. Sci. Comput. 21 (6) (2000) 2126–2143.
[13] S. Osher, A level set formulation for the solution of the Dirichlet problem for Hamilton–Jacobi equations, SIAM J. Math. Anal. 24

(5) (1993) 1145–1152.
[14] S. Osher, J.A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations, J.

Comput. Phys. 169 (1) (1988) 12–49.
[15] S. Osher, C.-W. Shu, High order essentially non-oscillatory schemes for Hamilton–Jacobi equations, SINUM 28 (1991) 907–922.
[16] D. Peng, B. Merriman, S. Osher, H.K. Zhao, M. Kang, A PDE-based fast local level set method, J. Comput. Phys. 155 (2) (1999) 410–

438.
[17] G. Russo, P. Smereka, A remark on computing distance functions, J. Comput. Phys. 163 (1) (2000) 51–67.
[18] S.J. Ruuth, B. Merriman, S. Osher, Fixed grid method for capturing the motion of self-intersecting interfaces and related PDEs, J.

Comput. Phys. 163 (2000) 1–21.

L.-T. Cheng, Y.-H. Tsai / Journal of Computational Physics 227 (2008) 4002–4017 4017
[19] J.A. Sethian, Fast marching level set methods for three dimensional photolithography development, Proc. SPIE 2726 (1996) 261–272.
[20] C.-W. Shu, S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys. 77 (2) (1988)

439–471.
[21] R.J. Spiteri, S.J. Ruuth, A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer.

Anal. 40 (2) (2002) 469–491.
[22] M. Sussman, P. Smereka, S. Osher, A level set method for computing solutions to incompressible two-phase flow, J. Comput. Phys.

114 (1994) 146–159.
[23] A.-K. Tornberg, B. Engquist, The segment projection method for interface tracking, Commun. Pure Appl. Math. 56 (1) (2003) 47–79.
[24] Y.-H. Tsai, L.-T. Cheng, S. Osher, H.K. Zhao, Fast sweeping algorithms for a class of Hamilton–Jacobi equations, SIAM J. Numer.

Anal. 41 (2) (2003) 673–694.
[25] J.N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Automat. Contr. 50 (1995) 1528–1538.
[26] J.-J. Xu, Z. Li, J. Lowengrub, H.K. Zhao, A level-set method for interfacial flows with surfactant, J. Comput. Phys. 212 (2) (2006)

590–616.
[27] H.K. Zhao, A fast sweeping method for eikonal equations, Math. Comput. 74 (250) (2005) 603–627.
[28] H.K. Zhao, T.F. Chan, B. Merriman, S. Osher, A variational level set approach to multiphase motion, J. Comput. Phys. 127 (1996)

179–195.

	Redistancing by flow of time dependent eikonal equation
	Introduction
	The proposed algorithm
	Discretizations and accuracy
	Complexity
	Extension of values

	Numerical study
	Simple case
	Additional iterations
	Kinks
	Comparison
	Three-dimensions
	Level set motion

	Conclusion
	Acknowledgments
	 blank
	ENO interpolating polynomial

	References

